ARI Research Note 96-07

General Principles for an Intelligent
Tutoring Architecture

John. R. Anderson, Albert Corbett, Jon Fincham,
Donn Hoffman, and Ray Pelletier
Carnegie Mellon University

Research and Advanced Concepts Office
Michael Drillings, Acting Chief

November 1995

United States Army
Research Institute for the Behavioral and Social Sciences

Approved for public release; distribution is unlimited.

DTIC QUALLTY INSTECIED &

U.S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON
Director

ﬂ
Research accomplished under contract
for the Department of the Army

Carnegie Mellon University

Technical review by

Joseph Psotka

NOTICES

DISTRIBUTION: This report has been cleared for release to the Defense Technical Information
Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution
other than to DTIC and will be available only through DTIC or the National Technical Information
Service (NTIS).

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not
return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The views, opinions, and findings in this report are those of the author(s) and should not
be construed as an official Department of the Army position, policy, or decision, unless so
designated by other authorized documents.

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED |
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE

1. REPORT DATE
1995, November

2. REPORT TYPE
Final

3. DATES COVERED (from. . . to)
July 1985 - July 1989

4. TITLE AND SUBTITLE
General Principles for an Intelligent Tutoring Architecture

5a. CONTRACT OR GRANT NUMBER
MDA903-85-K-0343

Sb. PROGRAM ELEMENT NUMBER
0601102A

6. AUTHOR(S)

John R. Anderson, Albert Corbett, Jon Fincham, Donn Hoffman, &
Ray Pelletier (Carnegiec Mellon University)

5c. PROJECT NUMBER
B74F

5d. TASK NUMBER
711C

Se. WORK UNIT NUMBER
C02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Institute for the Behavioral and Social Sciences
ATTN; PERI-BR

5001 Eisenhower Avenue

Alexandria. VA 22333-5600

10. MONITOR ACRONYM
ARI

11. MONITOR REPORT NUMBER
Research Note 96-07

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
COR: Judith Orasanu

14. ABSTRACT (Maximum 200 words):

This report describes the major outcome of our research project which has been a set of ideas for developing
intelligent tutoring systems and an architecture for implementing these ideas. The approach is built around
developing a production system model of the skill being taught. Declarative instruction is built to communicate
the production rules, a model tracing methodology is implemented to monitor their learning, and a knowledge
tracing methodology is implemented to guarantee their mastery. The multiple programming languages project
was an attempt to build a single architecture based on these ideas which was capable of teaching many different
programming languages. Tt has been used so far to teach LISP, prolog, and pascal at CMU, and NYNEX has
adapted it to teach COBOL. Current research is aimed at building tools to extend this architecture to an

authoring system for intelligent tutors generally.

15. SUBJECT TERMS
Intelligent tutoring architecture

JRITY CLASS! 19. LIMITATION OF
ABSTRACT
16. REPORT 17. ABSTRACT | 18. THIS PAGE
Unclassified Unclassified Unclassified Unclassified

20. NUMBER 21. RESPONSIBLE PERSON
OF PAGES (Name and Telephone Number)
29

Table of Contents

Abstract 2
Key Elements of the Model-Tracing Methodology 3
Declarative Instruction 5
Model-Tracing Practice 6
Knowledge Tracing and Mastery Learning 8
Summary: The Critical Intervening Learning Variable 8
The Multiple Languages Project 10
Classroom EXperience 12
An Authoring System for Intelligent Tutors 14
Step 1: Develop an Structured Interface 15
Step 2: Specify Solution Syntax e e 16
Step 3: Specify Syntax of Problem Representation 16
Step 4: Production Rule Writing 17
Step 5: Attaching Declarative Information to Productions 17
Step 6: Entering and Annotating Problems 18
Step 7: Specifying the Curriculum, 18
What One GetsforFree 19
SUMMANY . . .o e e 19
References e 20

Abstract

This report describes the major outcome of our research project which has been a set of ideas for
developing intelligent tutoring systems and an architecture for implementing these ideas. The approach
is built around developing a production system model of the skill being taught. Declarative instruction is
built to communicate the production rules, a model tracing methodology is implemented to monitor their
learning, and a knowledge tracing methodology is implemented to guarantee their mastery. The multiple
programming languages project was an attempt to build a single architecture based on these ideas which
was capable of teaching many different programming languages. It has been used so far to teach LISP,
prolog, and pascal at CMU and NYNEX has adapted it to teach COBOL. Current research is aimed at
building tools to extend this architecture to an authoring system for intelligent tutors generally.

We have developed a number of inteiligent computer-based tutors for the domains of LISP
programming, geometry theorem-proving, and algebra. The state of this research as it stcod in 1987 is
summarized in Anderson, Boyle, Corbett, and Lewis (1990). These tutors had modest success in real
classroom situations producing improvements on the order of one standard deviation or one letter grade.
More recently we have been trying to identify the essential features of our tutoring methodology, the
theoretical bases for these features, and have been trying to develop a tutoring architecture that facilitates
creation of tutors with these features. This report identifies what we feel are the core principles for
intelligent tutoring; describes a first-pass architecture that partially embodies these principles, describes
our experiences in implementing tutors for LISP, Prolog, and Pascal in this architecture, and describes the
current status of our work on creating a new system which is an authoring system for tutors of this general
type.

We call our approach to tutoring a model-tracing methodology. This involves first developing a cognitive
model which is capable of soiving problems in the same way we want students to solve the problems. This
cognitive model is then used to interpret the student's performance of some task at the computer.
Basically, the tutor tries to find some way of solving the problem within the cognitive model that matches
the student's problem solving and uses this way as the interpretation of the student. All instructional
decisions are driven off this interpretation. In our view the success of our tutoring methodology is basically
a result of our use of a cognitive model. This success derived from basic principles of skill acquisition as
embodied in theories like the ACT" theory (Anderson, 1983, 1987). In the next section of the paper, we
describe the basic implications of that theory for tutor design. These implications turn out to be
surprisingly simple.

Key Elements of the Model-Tracing Methodology

According to the ACT" theory a cognitive skill is represented as a set of production rules. There is
"considerable evidence for this assumption (e.g., Anderson, 1983, 1987; Just & Carpenter, 1987; Kieras,
1982; Kieras & Bovair, 1986; Newell & Simon, 1972; Singley & Anderson, 1989) and the general success
of our approach to tutoring can be seen as further evidence. A production rule is a condition-action pair
which specifies taking some problem-solving action when a certain condition is met. We have found that
the skills being taught in a course can be decomposed into many hundred production rules.

Working within a production system architecture like ACT® places a lot of constraints on the
representation of a skill. The necessity of representing the skill as productions provides some constraint
but much further constraint comes from style rules (Bovair, Kieras, and Polson, 1990) imposed by the
particular theory. However, for complex tasks it is not the case that there is an unique way of representing

the skill. Thus, for instance, consider the skill of writing extractor sequences in LISP. An example of an
extractor sequence is (car (cdr (cdr lis))). LISP evaluates such embedded sequences inside out and so
will twice apply cdr to take the tail of the list and then car to extract the next element. So if lis were (ab ¢ d) it
would return ¢. Notes that the order in which the LISP functions (car and cdr) are listed is just the opposite
of the order in which they are evaluated. One can write productions which plan this code in the left to right
order that they are written or in the right-to-left order that they are evaluated. In the former case, the first
production to apple would be:

P1 IF the goal is to get the nth element of the list
THEN use car as the first function
and set as a subgoal to code an argument to car
that will get the n-1st tail of the list

In the latter case the first production to apply would be:

P2 IF the goalis to get the nth element of the list
THEN use cdr as the most embedded function
and set as a subgoal to get the n-1st element
of that list

The first production rule would guide coding as in our original LISP tutor while the second production rule
wouid guide tutoring as in the GIL tutor of Reiser, Ranney, Lovett, and Kimberg (1989). The theory
provides no direct guidance on the issue of which method to teach to students or neither.

However, there can be important consequences of the model taught. Students may find one method
more in keeping with their prior methods. Thus, in the above case one could either argue that the first
method is consistent with left-to-right problem-solving or the latter method is more in keeping with forward
causal reasoning. It remains an empirical issue to evaluate the two. Also, one method might just be more
powerful than another. Thus, for instance, Koedinger and Anderson (1990) present a model of geometry
problem solving which is capable of solving more difficult problems than the cognitive model embedded in
the original geometry tutor of Anderson, Boyle, and Yost (1985) Another possibility is that one method
leads to greater transfer. Thus, Singley, Anderson, and Gevins (1989) describe a model for solving
algebra word problems which leads to greater transfer than the method typically taught in aigebra
textbooks. Perhaps the most important issue about choice of cognitive model is that there can be a clash
between the method advocated by the tutor and the methods taught elsewhere to the students. Thus, a
major source of difficulty in our work with the algebra tutor was that the methods it employed, based on
one textbook (Keedy, Bittinger, Smith, 1978), conflicted with the methods students had learned in the
classroom.

In our view development of the cognitive model is the most important aspect of tutor development and
the most time intensive. It is basically the problem of developing an expert system to solve a problem with
the added constraints that the system solve the problem in a cognitively plausible way, that it satisfy some
measure of optimality among alternative methods, and that it be consistent with the methods being taught
to the student eisewhere. It is not a task that can be done well without intensive study of the domain and
the context of its instruction. It is a task which no amount of prior cognitive theory nor development of
authoring tools will eliminate.

The work and difficulty involved in developing an adequate cognitive model is the bad news in this
approach to tutoring (see Bovair, Kieras, and Polson, for similar comments). The good news is that once
this is accomplished the rest of the task is relatively easy. There is a lot of support that can be offered for it
and a very high probability of significant improvement in student achievement.

Declarative instruction

Developing a production rule model amounts to identifying the instructional objectives. Each production
rule is anott.er piece of knowledge that one wants to communicate to the student and have the student
master. The ACT" theory provides strong guidance on the issue of how these production rules are to be
communicated. According to the theory production rules are acquired by analogy to examples of
solutions that were produced by these productions. Thus, if we wanted to teach a student productions
P1 or P2 above we should center our instruction around an example involving this production. Thus, we
might show them the example

(car(cdr'(abc))=b

The critical issue is not just presenting the example but to attach to it information to explain how the
example relates to problem solving goals. Essentially we need to attach to the example the production
rule it is supposed to illustrate. So if we were using the example above to teach P1 we would need to also
present P1 and see if the student understood the application of P1 to the example. We advocate doing
this through a series of questions that make sure the subject can map each clause of production onto the
example:

What is the goal of this code?
answer: to get the second
element of (abc)

What function do you use?

answer. car

What is the function's argument?
answer: (cdr'(abc))

What is the goal of the argument?
answer: to get the first tail
of(abc)

In our view appropriate declarative instruction consists of presenting the production rules in English,
providing examples of the application of these rules, and interrogating the student so that the student
understands the application of these rules to the example.

Model-tracing Practice

Once such rules have been explained the next step is to have the student solve problems which involve
the target production rules. There are two goals in such problem-solving. One is to determine if the
declarative instruction has really been properly encoded. The second is to give the student opportunity
to compile their declarative knowledge into production rule format and practice that. Both goals require
that we be able to interpret the student's problem-solving behavior and identify what rules they are
applying, correctly or incorrectly. This is where the model-tracing methodology becomes involved. Simply
put, we try to find some sequence of production rules in the underlying student mode! which will
reproduce their behavior. If we can, then we give them credit for understanding. If not we need to find
some best interpretation of their behavior which will allow us to determine the points of discrepancy.
These points of discrepancy will be points where a particular production rule shouid have fired but did not.
That failed production rule becomes a target for further instruction and remediation. Besides needing to
deal with errors in problem solution the tutor needs to be able to help the student when they are stuck.
This again requires interpreting the students current problem solution and determining what production
should apply next. That production becomes a target for advice.

The task of model tracing is difficult because of ambiguity--more than one sequence of production rules
could have produced a particular surface behavior. This makes it impossible to proceed with any certainty
and creates computational problems as we need to follow a potentially exploding number of alternative
interpretations. Our methodology develops its distinct character because of the strong measures we take
to tame that ambiguity. One measure is to insist that a student never deviate from a correct solution path
as we do in our immediate feedback tutors such as described in Anderson, Boyle, Corbett, and Lewis
(1990). Another measure is to present disambiguation menus to students as soon as they produce
behavior that can be generated by more than one correct production rules. A third measure is to try to
impose strong stylistic constraints on the student to restrict the number of acceptable solutions. Such

measures have unfortunate negative side effects and one of the goals in the research that we will
describe has been to find ways to maintain the interpretability of behavior but avoid these negative side
effects.

The system needs to be able to respond to holes in the problem solution, whether these holes reflect
overt errors or points where the student simply cannot progress. Our method is to essentially reinstruct
the needed production rule. There is a danger in simply representing the rule as that may provide the
student with more information than they really need. There is ample evidence that people remember
better what they can generate for themselves rather than what they are told (Anderson, 1990b). It is also
possible that processing elaborate feedback will interfere with problem solving. A final danger is that
subjects will process the feedback we present them just to extract the answer and not really understand
why it is the answer. Thus, we have adopted a successive questioning strategy in which we provide
students with minimal information and then only more as needed.

One couid imagine a scheme in which there were many layers of progressive hints, but our students find
such a scheme frustrating. Rather we have opted for a two-hint scheme in which the first level basically
frames the task and leaves it to the student to soive it while the second level explains the correct solution.
Thus, for P1 we would present at the first level:

"You need to come up with some sequence of extractors that will produce the third element of a list.
Remember that LISP evaluates its functions inside out.”

While the second level we would present:

"To get the third element of a list you need to get the second tail of the list and then apply car to get the
first element of that list. Since LISP evaluates its functions inside out, the first thing you will code is car and
then you will code its argument which gets the second tail.”

An interesting aspect of this approach to tutoring is that it places no value on bug diagnosis and
remediation which has been the traditional heartland of intelligent tutoring research (e.g., Sleeman &
Brown, 1982). The reason is obvious--the student's problem is that they don't know the correct rule and
this is what needs to be repaired. They really do not need an elaborate explanation about what peculiar
mental state led to error. There is now research finding that reinstruction helps while bug remediation
does not (Sleeman et. al., 1989).

There needs to be one strong qualification placed on this rejection of bug remediation. A bug needs to
be remediated if it actively interferes with student's incorporating the correct instruction. There are two

7

ways this can happen. First, the subject can have some misconception that causes the student to
systematically misinterpret the instruction. This appears not to be a great difficulty in the domains of
programming and mathematics where students do not harbor elaborate and strongly held misconceptions
about the subject matter. It may will be a serious issue in other domains like physics where strong
misconceptions have been shown to interfere with learning the target domain (McCloskey, 1983). The
second way misconceptions can interfere is that the student simply refuses to process the instruction
convinced that he or she is right. In contrast to the first category of distorting misconception, this category
of obstinate misconception is quite prevalent in the domains of programming and mathematics. Here the
students really need not have their misconceptions explained, they only need be convinced that their
belief is incorrect. Sometimes, a simple "error diagnostic” rather than a bug message is sufficient. Thus, if
the student enters "write” rather than "writeln® for PASCAL, we will deliver the message "You need to
issue a line fed and write does not do this." On other occasions a certain exploratory component to the
tutor is useful. Students can try out the code they believe in and see that it does not produce what they
believe it will or students can try to create a model of their mathematical solution and see the contradiction.

Knowledge Tracing and Mastery Learning

The outcome of the model tracing process is a scoring of the production rulés in a problem solving
episode as to whether they were performed correctly or not. We can use this scoring to estimate the
probability that the student has mastered the target production rule. Over problems we can keep
updating our estimates of what the student knows. This is what we call knowledge tracing in contrast to
model tracing. We have developed an algorithm for performing such knowledge tracing based on work of
Atkinson (1972). Our application of their technique is described in Al (Corbett, Anderson, & Patterson, in
press).

There are a number of things one can do with this interpretation of the student's knowledge state. One
is to simply communicate this interpretation to the student or teacher which we believe can be very useful.
The more elaborate use we make of it within our tutors is to implement a remediation algorithm in which we
select problems designed to practice students on those productions they are weak on. We divide the
material up into a large number of curriculum units where each unit involves introducing the student to a
small number (less than 10) of new related production rules. As in standard mastery-based methodology
(Block, 1971), we try to assure the students have mastery of the elements in the current curriculum unit
before promoting them to the next unit. We continue to present to the students remedial problems until
all the target production rules exceed a certain threshold defined as a probability of mastery. In our
applications we have had pretty good success (Anderson, Conrad, & Corbett, 1990) in using a mastery
level defined by a 95% confidence on our part that the student has mastered the target production rule.
Given the way we typically parameterize the knowledge tracer, this means that student will have at least 2

8

to 4 opportunities to perform the target rule. That is to say a couple of successful uses or an error and
three successful uses is enough to raise the production rule above threshoid.

Summary: The critical intervening learning varlable

We have now reviewed the essential ideas involved in creating a model-tracing tutor. They are clearly
centered on the production rules and providing students with example problems that illustrate their use.
in our theory, the critical intervening variable that determines rate of learning is the number of problems
the student has both solved and understood. Each problem solved and understood gives the student
another opportunity to compile and strengthen production rules. Note, it does not matter on this view
how students actually achieve the problem solution only that a solution is obtained. We have found, in
fact, that students following very different trajectories to final solution and understanding are nonetheless
equivalent in their resulting problem solving skills (Anderson, Conrad, & Corbett, 1990). This argues that
within the constraint of achieving understanding, one wants to do everything possible to maximize the
rate of progress through relevant examples. There are really three critical criteria by which one wants to
judge instruction. First, one wants the student to achieve understanding. Thus, it would not do to simply
tell the student what to do in problem solving and blindly follow the instruction. Second, the problems
have to be relevant to the instruction goals. Thus, for instance, it does no good to give students massive
practice on components that reflect only a fraction of the target skill. The third constraint is speed. A pure
discovery environment (assuming understanding can be achieved) is a poor idea because some things
are very hard to discover without guidance. There is a growing body of data which is consistent with the
benefit on instruction that emphasizes these three conditions (Anderson, Conrad, & Corbett, 1989;
Black, Bechtold, Mitrani, & Carroll, 1989; Carroll, in press; Carroll & Mack, 1985). |

We feel that knowledge tracing achieves the relevancy criterion and that our example-based instruction
and incremental-feedback achieve the understanding criterion. The criterion that is actually the most
challenging is that of maximizing rate of progress through the problems. Here the challenge is to create an
interface that minimizes irrelevant time and maximizes profitable learning. Most paper and pencil or
standard computer-editing environments leave too much unnecessary detail for the student to manage.
We advocate what we call the structured interface. A prototypical example of a structured interface is the
structured editor in programming which is a system that can take care of all the low-level details of syntax in
programming without really understanding the goals of the student. More generally, we view the
structured interface approach as doing for the student what the technology can provide without the
intelligence to solve the problem. Thus, in our word problem tutor (Singley, Anderson, & Gevins, 1990)
we provide students with automatic symbol manipulation facilities. In the context of geometry theorem-
proving this means providing student with a proof-checking facility among others.

Structured interfaces do for the student some of what is the target of traditional instruction. Thus,
structured editors in programming eliminates the need for students to learn syntax. This often provokes
the criticism that tutors which use them do not teach the skills that these systems provide--syntax of the
programming language, algebraic symbol manipulation, or proof checking as the case may be. We have
two responses to such criticisms. The first is to note that these are typically not the skills students have
difficulty mastering. The second is that there is no reason for students to master these skills since they can
be automatically provided. Thus, we feel that we are justified in providing these computer-automated
components if they can accelerate the acquisition of those problem-solving components that cannot be
automated.

The Multiple Programming Languages Project

Next we would like to discuss the initial results from our multiple programming languages project which is
an approximate attempt to embody the philosophy outlined above and which serves as the basis for our
projections for the new authoring system. This system used a common production system, interface, and
tutoring architecture to teach LISP, Prolog, and Pascal. We will illustrate it with respect to Pascal.

Figure 1 shows how the system appears when a Pascal problem is first brought up. At the top there is a
scrollable window with problem statement, below it another scrollable window with a code template, and
below it a window for messages from the tutor, and below it a window for typing in information. Off to the
right is a menu of actions that can be taken. A particular node in the code template is highlighted. This is
the node that the student will expand by his or her next action. The student can choose to shift the focus
to a different node by clicking on the desired node. The student can indicate how to expand the node

Insent Figure 1 About Here

Figure 2 shows the code window at a relatively late point in the process. The student has chosen to
expand the highlighted node as a arithmetic expression; a submenu of arithmetic expansions has been
brought up, and the student has chosen to expand this as multiply. Most of the code entry takes place by
means of menu selection. The student is required to type in names of identifiers and other such terms.
There is also a facility by which the student can type in larger pieces of code and a parser will analyze this
into a set of menu actions an produce the resulting code. Our model for this interface was taken from the
system used here at CMU (Goldenson, 1988; Miller & Chandok, 1989) for the instruction of introductory
programming to the bulk of CMU undergraduates. This course uses a structured editor but not a tutor.
Considerable success has been reported for it.

Insert Figure 2 About Here

10

The error feedback in the tutor is quite primitive. We recognize a few common bugs such as when
students confuse write and writeln in Pascal and provide explanatory feedback but most of the time when
the student makes an error we simply respond by stating that it is an error. Most of our effort at instruction
takes place upon requests for help from the student in which case we present a series of successively
strong hints culminating in telling the student what to do. However, the design of the hints was purely a
matter of intuition. in redoing the effort we intend to use the two-step hinting procedure iliustrated earlier.

The current tutor is an immediate feedback tutor that insists that the student stay on the correct path.
However, we view this simply as a holding pattern until we can implement something closer to the version
of the LISP tutor which we call the flag tutor (Corbett & Anderson, 1990) In the flag tutor system when a
student makes an error, the tutor places the erroneous code in bold to flag that it is an error but the
student is allowed to continue coding. This is something that is easy to do in a syntax-based editor. We
have observed that 80% of the time when the student's error is flagged the student will spontaneously
correct it; 10% of the time they ask for help; and 10 percent of the time they continue coding despite the
warning they are in error. Occasionally, students are actually on a correct path of solution and the tutor will
accept this if it works. More often students will become convinced they are in error and go back and seek
help from the tutor at the point of error.

This flag tutor has the much of the advantage of the immediate-feedback tutor in allowing students to
quickly correct mistakes. It minimizes time spent processing feedback and allows students to self correct
without any feedback. It also allows students, when they are set on their erroneous solution, to become
convinced that they have a problem before processing the tutor's feedback. It also allows the student
who knows something innovative to express it. We have found students get through the curriculum in the
flag tutor just as fast as with the immediate feedback tutor. They tend to get higher final achievement

scores and give more favorable ratings of the tutor, although neither of these resuits has proven
statistically significant.

One of the major technical achievements of the tutor was the use of the Tertl production system. This
system was designed to take advantage of the constraints of tutoring in a model-tracing paradigm. In such
a paradigm, as long as the student stays on course of an interpretable solution, only one production will
fire at each point and that production will apply to a part of the solution the student designates. It turns out
in this case a production system can be written which identifies the correct production in the time
proportional to the number of productions and independent of the size of problem representation. This
means that we are relieved of the complexity barrier and have been able to tutor many hundred line
programs. Problem complexity had always been a major limitation in our previous efforts at tutoring.

11

Another nice technical feature of our system was the ability to enter problems into the tutor as direct
code. This facility depended on the parser we developed for processing code. Basically, we attached to
the parser the ability to reverse the production rules involved in coding and produce a working memory
representation of the problem. This representation had to be augmented with various English referring
expressions and certain information about which orderings in the code were critical but it made entering
problems much less laborious than previously. It is aiso an important step towards giving a teacher a facility
for problem entry that does not require knowing the intricacies of production rule coding.

Another interesting feature of this multiple programming languages tutor is that it served as the basis for
transfer to another cite of another application., The researchers at NYNEX (Gray & Atwood, in press) were
able to take this system and adapt it to provide a tutor for COBOL which is taught internally within NYNEX.
Their tutor is also used at Metropolitan Life and they are exploring the options of using it at other cites.

Classroom Experience

in the fall of 1989 we completed a classroom test of the tutor in which it taught a semester course to
undergraduates in the School of Humanities and Social Sciences at Camegie Mellon. These students
were selected to never have a programming course before. In that semester course, students mastered
LISP, Prolog, and Pascal to the point where they could write in each language a program that would solve
an arbitrary 8-puzzle problem (Nilsson, 1971). There is no comparable non-tutor course but we view this as
a dramatic level of achievement for beginning students. We believe that one bases for the success was
the transfer of skills across programming languages. However, the order of learning the programming
languages was not systematically manipulated. (it was always Pascal, then LISP, then Prolog). It remains a
goal to manipulate language order and see how much the learning of later languages is facilitated.

In the class we experimented with a certain facility which proved to be popular with students and which
illustrates a general direction we need to go in developing a general tutoring system. We graphed for
students how well they were doing on the various production rules that we were monitoring. Figure 3
shows an illustration for a lesson on recursion. The length of each bar represents our estimate of the
probability that the student has mastered each of the rules. Upon each action that the student takes an
appropriate production rule will grow or shrink. The line to the right represents the 95 percent confidence
threshold that we use for assuming the student has mastered the production rule. Students appreciate
this access to the system's internal model of them. In the future we intend to attach declarative, example-
based text to each of these bars so that students can bring up instruction relevant to a rule they are having
difficulty on. This effort reflects the direction of making the inner workings of the tutor available to student
and teacher. We feel that it is important that its behavior be as transparent to all as possible so that the
system not appear as a mysterious burden being forced on everyone. Another step in this direction might

12

be to let students chose which rules they wanted remediation on rather than leaving this step in the hands
of the tutor.

insent Figure 3 About Here

The system was not without its difficulties. Besides the glitches associated with new software, students
found the option of typing in code and having it parsed tempting but frus;trating.2 It often seemed
attractive but they were constantly making errors in their syntax and so wouki go back to menu based
entry.

Students also complained about getting lost in the large programs where the tutor would be providing
feedback about the next line of code in some submodule while students had lost track of what the
submodule was supposed to do. This suggests the need to provide appropriate explanation to students
of what various subgoals where supposed to achieve.

An interesting outcome concerned the use of recognition-based code entry through the menu system.
We did a comparison of this with recall based entry as in the LISP tutor where subjects have to recall and
type the code in. Students trained on a recognition based system did not do as well as recall subjects
when they were asked to do paper and pencil tests. We have subsequently obtained evidence that this
reflects a mismatch between the mode of training (recognition) and the mode of the paper and pencil test
(recall). If tested in a recognition mode they are actually superior to recall subjects. This raises serious
questions about the criterion for which one is training. As we stated earlier we have bought into the view
that we are training students to do well in a recognition-based structured editor and so are not necessarily
bothered by these results. However, others might take the view that paper-and-pencil recall-based
performance should serve as the criterion and would want a recall-based tutor.

The tutor provoked a lot of complaints from those who had to develop software on it. Developing a tutor
for a language required the mastery of a lot of baroque details and there were relatively few facilities for
debugging the software. As long as such development is done in-laboratory these were tolerable
inconveniences. However, it is clear that the development environment will have to be substantially
cleaned up if we are to see it used out of the lab.

2Actually, we created this system in response to student requests for such a facility. This is one example
(among a number) of a feature which students demanded only to complain bitterly when it was provided.

13

An Authoring System for intelligent Tutors

We think we now sufficiently understand the model tracing methodology that we can create an authoring
system for this style of tutor. There are two related motivations for going in this direction. One is that we
would like to extend the range of people who can create such tutors and extend their use beyond
laboratory classrooms. The second is that we want to formalize our theory of of tutoring and lay the
empirical groundwork for extensive empirical testing of this theory. Our claims of success will aiways be
received with a centain justified skepticism as long as it is we who are testing our own handcrafted tutors.
We see this as a necessary step for the field of intelligent tutoring in general. The time has passed when
ones ideas should shouid be given the protection of ones own laboratory and the only basis for deciding
among alternative proposals is rhetoric. it is time these ideas get out into the world in a form that they can
be explored and tested. It is also critical when this happens that they be subject to rigorous experimental
test and not more rhetoric.

In service of this we are trying to create an appropriately portable system, implemented in CommonLISP
sufficiently efficiently that it can run on commonly available systems like the MAC Il. We need to eliminate
the difficulties in use of the system. We also need to release the tight connection our systems have had
to a prescribed curriculum and instructional mode. Clearly, in application educators want the freedom to
choose what will be taught and how it will be taught. Similarly, researchers want a tool that will allow real
variability.

When we talk about an authoring system for intelligent tutors, it is important to appreciate that there are
levels of authoring and different users would like to have access to different levels. Our discussion with
teachers suggests they most would like control over the problems that are used and the sequence of the
curriculum. For them a system that allowed them to enter problems to be tutored and specify the
sequence of problems would be adequate. Many teachers are also very concerned about the language
the tutor uses and that it be congruent with the language they use in the classroom. As teachers do not

agree as to what language is appropriate it is important they can also have access to this without having to
master the more technical aspects of the tutor.

As we have discussed earlier, if someone is actually going to construct new educational software in the
tutor there is no way to avoid the task of developing production system student models. We think this can
be facilitated in various ways and one of our research goals is to study the acquisition of production system
modelling skills and perhaps tutor them as we have other skiils.

A person doing production system modelling is still quite far removed from the internals of the system.
We suspect that the task which will take the software developer closest to the internals in developing the

14

structured interface. In certain applications it may be possible to borrow a structured interface as NYNEX
was able to borrow our structured editor interface. However, if one is striking out in a completely new
domain one will have to go down to this level which will require mastery of Commonlisp and its relationship
to the tutor.

Below we review the steps involved in creating a tutor for a new domain. They are listed roughly in the
order that they will have to be addressed in development. One might imagine software developers doing
the early steps and end-users such as teachers doing the later steps. With each step we will discuss some
of the issues invoived and some of the special considerations that arise in these steps with respect to our
programming applications. However, for contrastive purposes we will also discuss the application of these
steps in the anticipated conversion of the word problem tutor (Singley, Anderson, & Gevins, 1990).

Step 1: Develop an Structured Interface

In our view the first step in developing an interface has to be specifying the structured interface for
problem solving. This is a system that can be used without the tutor. One needs to construct and test out
such a problem-solving environment before actually developing the tutor. As we see problem-solving it is
not independent of the interface in which it takes place and so one cannot develop a cognitive model until
one has settled on the interface. Then one can observe problem-soivers with that interface and try to
develop a cognitive model. This observation process may also lead to suggestions for improvement in the
interface. The goal in developing the interface shouid be to design the best problem-solving
environment that non-intelligent technology will permit.

in the case of our programming application, this structured interface becomes the structured editor. We
have developed a set of facilities for taking a BNF specification of the grammar of the language plus some
prettyprinting information and automatically compiling the structured editor for that language. Thus, in the
programming languages domain it is relatively painless to get a tutor for a new programming language
provided one buys into this sort of interface.

In the case of the word problem tutor we want to create an interface that replicates the existing interface
illustrated in Figure 4. This system consists of a set of facilities for bring up diagrams, labeling them, writing
equations, and solving them. In particular, we provide the student with the power of a symbolic calculator
and relieve them of the need to actually soive expression. Given that the interface already exists one
might question the need to recreate it. Besides the fact that it only resides on a dying Al machine (the
Xerox d-machine), it is necessary that the interface have hooks into the production system.

Insent Figure 4 About Here
15

Step 2: Specify Solution Syntax

It is necessary that the production system model be able to read the existing state of the solution and
modify that solution state just as a student can. In a production system, access to all knowledge is through
a working memory. This requires that we specify a syntax for representing the current screen structure in
working memory. Each time an change takes place to the screen it is necessary to update the working
memory's representation. In the case of programming, this is a hierarchical representation of the code
structure. in the case of the word problem tutor it is a representation of the state of the diagram and of the
equations with variables providing cross-references between corresponding quantities.

Step 3: Specify Syntax of Problem Representation

One must also keep a representation of the problem. In the case of certain formal domains like geometry
or algebra symbol manipulation, the domain already has a set of formal conventions and notations for
encoding problem states and one can represent the problem in those terms. Domains like programming
or algebra word problems are much more difficult because they traditionally use informal English
specification of the problem. An entirely "honest” problem representation would be as a string of words
but this would involve us in the very difficult process of natural language understanding. It is also the case
that the students really do not have difficulty in the language understanding components. So it is
somewhat irrelevant to try to model the natural language processing. This motivates one to search for
some internal representation that represents the immediate product of the natural language
understanding process. In the case of word problems we hope to use something like the propositional
representation that Kintsch and colleagues (Kintsch & Greeno, 1985) have used with some success to
model word problem solution.

We have problems with such a propositional representation in the case of programming because there is
the rather unbounded process of design in going from this to an algorithmic representation. Thus, we
would like to have a representation that encodes the algorithm in some language-free way and then focus
on tutoring the realization of that algorithm in some target programming language. This leaves open the
goal of teaching algorithm design in certain restricted applications such as sorting algorithms.

We have chosen to represent the programming algorithms in an internal representation that is rather
closely tied to prolog. There are a number of motivations for this choice. First, we have found, as have
others (Taylor 1987), that as long as students’ prolog programming involves treating the language
declaratively and avoids dealing with procedural details like the cut it is a very easy language to use. Thus,
it provides a somewhat natural algorithmic representation. it is also relatively easy to generate English
descriptions again if we ignore procedural issues. However, this being said, the prolog choice is

16

somewhat arbitrary but does provide us with a functional algorithmic representation. it does allow us the
interesting potential of presenting the system with a problem in any language, have that problem compiled
down to the internal representation, and then being able to tutor that problem in any target language.

Step 4: Production Rule Writing

The heart of the task is the production rule writing. With the interface specified and internally modelled
and with the problem syntax specified, this becomes a relatively constrained task. This is to write
production rules that map the current state of the problem solution and the problem representation into
the interface actions that the ideal student should take. The constraints are helpful because they make
the production rules fairly faithful to the task before the student. The idea that the production rules should
produce interface actions is a deviation from many of the production system models that we have worked
on in the past where the production rules actually specified changes to the problem structure. This is both
unfaithful to what the student does and makes the production rules unnecessarily baroque in that it is
often complex to specify changes to the solution structure. Now one can simply specify a interface action
and have the consequence of that interface action in terms of solution representation automatically
dumped into working memory.

One of the other features of our production system is that we are going to allow for uniimited number of
productions to fire before an interface action is taken. This allows in many cases easier modelling but
produces the prospect for serious temporary non-determinism as there may be many paths of these
invisible productions taking place before an production fires that produces a disambiguating external
action. The current production system is sufficiently efficient that we can deal with the bounded cases of
such non-determinism that we anticipate in the programming and word problem applications. Of course,
people could create systems in which there was an exponential explosion of non-determinism. However,
our attitude to to leave this to developer's good sense rather than legislating the restrictions on invisible
productions and resulting non-determinism.

Step 5: Attaching Declarative Information to Productions

Once the production rules have been written, one then needs to attach to these production rules
examples for instruction and a set of questions that go with these examples. To date all of the instruction
that we have associated with productions has been hand generated. We intend to explore an option of
automatic generation of questions from the production form. However, we doubt that we will ever want to
eliminate the option for handcratting of instruction. This is one of the points of contact teachers like with
the system--to have the ability to determine what is said.

17

Step 6: Entering and Annotating Problems

Another thing that teachers like is the facility to determine the problems that students see. The ideal
mode for entry of such problems varies from domain to domain. In the programming domain, what is ideal
is to be able to type in programs and have the tutor be able to tutor that program and equivalent solutions.
As we said earlier this is something we have already developed. In addition to the program the teacher
must enter a English problem statement plus attach English to various components of the code such as
stating that a particular variable represents federal income tax.

in a domain like geometry it is easier to enter the formal problem statement and have the tutor solve it.
The difference is that in programming it is the solution that is entered and in geometry it is the problem.
The reason for this is that in programming it is easy to formalize solutions and for geometry it is easier to
formalize the problem statement.

The word problem situation is similar to the geometry case. The teacher needs to enter a specification of
the key mathematical relationships in the problem. However, in addition to this formal specification the
teacher needs to be able to enter a natural language problem statement.

Step 7 Specifying the Curriculum

There are two ways in which the curriculum can be specified. One is just to identify the sequence of
production rules to be taught. They need to be aggregated into small units that correspond basically to
sections in typical textbooks. In principle this is all the tutor needs to compose a curriculum. It can choose
from its stock of problems those that exercise the needed productions. However, teachers often have a
desire to control the actual problems. So one might want to insist that certain prototypical problems be
presented and specify the sequence in which these problems are presented. The tutor can then recruit
additional remedial problems as needed. In may also be desired to enable the student to go on after a
fixed set of problems even if they have not achieved mastery. This does not strike us as a wise
educational policy but we even more firmly believe in the need to have the end user determine the shape
of the system.

if there is going to be remediation and mastery-based leaming, it is necessary to parameterize the system
with quantities that refiect the ability level of the student and the difficulty of individual productions. These
can be set at default levels to be adjusted automatically with experience with the student. Alternatively,
the teacher may want to actively adjust the parameters that determine the remediation policy and when the

student is judged to have mastered the material
18

Another adjustable dimension needs to be the coerciveness of instruction. As mentioned earlier our
tutors are designed to move seemlessly from a tutor to a structured interface for problem solution and
back again. This allows one to have a system which forces the student to stay on a solution path, which
allows the student to do anything, or which provides the guidance we would recommend of the flag tutor.
We intend to do further research on various possible configurations of coercion and freedom to provide
an array of options for student and teacher.

What one gets for Free

We have described all the things that are necessary to create a tutor from scratch in this tutor. Therefore,
it's important to note what comes with the system. One gets the production rule interpreter and facilities
for production rule development. One gets the model tracer and with it facilities for presenting
production-based instruction. One gets the mechanisms for knowledge tracing and curriculum
sequencing. Finally, there are the facilities to fashion one's feedback mode and level instructional
coercion. This is easily half the work in developing a tutor. In addition, if one is not starting from scratch,
one can use existing work on the earlier steps in this sequence.

Summary

As advertised in the beginning this report has provided a mixture of past, present, and future. We have
reviewed our past research that has led us to a particular view of how learning takes place and how tutoring
can facilitate it. The key conclusions are that the productions define the critical units of learning and that
the critical learning variable is to be number of problems solved and understood. A tutor should strive to
maximize rate of problem soiution and degree of understanding. We have in our tutoring work identified a
particular minimalist tutoring style, called ﬂag\ tutoring which achieves this.

We are currently doing explorations on generalizing the tutoring architecture in a way that reflects the
outcome of our research experience. We described the multiple-languages tutor which is an
approximation to the style of tutoring we would like to achieve. While it would be a gross exaggeration to
say that our experiences with this tutor have been uniformly positive, it presents us with an number of
achievements that make us confident for the future developments.

Our future plans for an authoring system reflect our desire to get the methodology into the hands of
teachers and researchers. The major motivation for the emphasis on flexibility is to facilitate
experimentation with the methodology. Enough pieces of the proposed authoring system are in place
that we have begun reimplementing the muitiple languages tutor. We hope to see the word problem tutor

reimpiemented within a year and in that time have a fairly general authoring system that can be distributed.
19

References
Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard University Press.

Anderson, J. R. (1987). Production systems, leaming, and tutoring. In D. Klahr, P. Langley, & R. Neches
(Eds.) , Production system models of learning and development, pp. 437-458. Cambridge, MA: MIT
Press.

Anderson, J. R. (1990). Cognitive Psychology and Its Implications. Third Edition. New York: W. H.
Freeman.

Anderson, J. R., Boyle, C. F., & Yost, G. (1985). The Geometry Tutor. In Proceedings of IJCAI-85. Los
Angeles, CA: IJCAI, 1-7.

Anderson, J. R., Boyle, C. F., Corbett, A. T., & Lewis, M. W. (1990). Cognitive Modelling and Intelligent
Tutoring. Artificial Intelligence, 42, 7-49.

Atkinson, R. C. (1972). Optimizing the learning of second-language vocabulary. Journal of Experimental
Psychology, 96, 124-129.

Black, J. B., Bechtold, S., Mitrani, M., & Carroll, J. M. (1989). On line tutorials: What kind of inference
leads to the most effective learning. In Proceedings of the CHI '89 Conference on Human Factors in
Computing Systems. Boston, MA: Association for Computing Machinery.

Block, J. H. (1971). Mastery Learning. New York: Holt, Rinehart, & Winston .

Bovair, S., Kieras, D. E., & Poison, P. G. (1990). The Acquisition and Performance of Text-Editing Skill: A
Cognitive Complexity Analysis. Human Computer Interaction, 5, 1-48.

Camoll, J. M. (In Press). The Numberg funnel: Designing minimalist instruction for practical computer skill.
Cambridge, MA: MIT Press.

Carroll, J. M., & Mack, R. L. (1985). Metaphor, computing systems, and active learning. International
Journal of Man-Machine Studies, pp. 39-57.

Corbett, A. T., & Anderson, J. R., (1990). The effect of feedback control on learning to program with the
Lisp Tutor. In Proceedings of the Twelfth Annual Conference of the Cognitive Science Society (pp. 796-
806). Hillsdale, NJ: Erlbaum.

Corbett, A. T., Anderson, J. R., & Patterson, E. G. (In Press). Student modeliing and tutoring flexibility in
the LISP Intelligent Tutoring System. In C. Frasson and G. Gauthier (Eds.), Intelligent tutoring systems: At
the crossroads of artificial intelligence and education. Norwood, NJ: Ablex.

Gray, W. D., & Atwood, M. E. (In Press). Transfer, adaptation, and use of intelligent tutoring technology:
The Case of Grace. In M. Farr & J. Psotka (Eds.), Intelligent Computer Tutors: Real World Applications.
New York, NY: Taylor & Francis.

Just, M. A, & Campenter, P. A. (1987). The Psychology of Reading and Language Comprehension.
Boston, MA: Allyn and Bacon, Inc.

20

Keedy, M. L, Bittinger, M. L., & Smith, S. A. (1978). Algebra One.. Menlo Park, CA: Addison-Wesley.

Kieras, D. E. (1982). A model of reader strategy for abstracting main ideas form simple technical prose.
Text, 2, 47-82.

Kieras, D. E., & Bovair, S. (1986). The acquisition of procedures from text: A production-system analysis
of transfer of training. Joumal of Memory and Language, 25, 507-524.

Kintsch, W., & Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychological
Review, 92, 109-129.

Koedinger, K. R., & Anderson, J. R. (In Press). The role of abstract planning in geometry expertise.
Cognitive Science.

McCloskey, M. (1983). Intuitive physics. Scientific American, 248, 122-130.
Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice Hall.
Nilsson, N. J. (1971). Problem-solving methods in artificial intelligence. New York:McGraw-Hill.

Reiser, B. J., Ranney, M., Lovett, M. C., & Kimberg, D. Y. (1989). Facilitating students reasoning with
causal explanations and visual representations. In Proceedings of the Fourth International Conference on
Atrtificial Intelligence and Education. Amsterdam.

Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cari\bridge, MA: Harvard Press.

Singley, M. K., Anderson, J. R., & Gevins, J. S. (March 1990). Promoting Abstract Strategies in Algebra
Word Problem Solving. (RC15861 (#69354)).

Sleeman, D., & Brown, J. S. (Eds). (1982). Intelligent tgton’ng systems. New York: Academic Press.

Sleeman, D., Kelly, A. E., Marlinak, R., Ward, R. D., & Moore, J. L. (1989). Studies of diagnosis and
remediation with high-school algebra students. Cognitive Science, 13, 551-568.

Taylor, J. (1987). Programming in Prolog: An in-depth study of problems for beginners learning to
program in Prolog. Doctoral dissertation, University of Sussex. Cognitive Studies Programme.

21

Figure Captions

Figure 1 The screen at the beginning of a PASCAL problem in the multiple-programming-languages |
tutor.

Figure 2 The screen in the midst of a PASCAL problem in the multiple-programming-languages tutor.

Figure 3 The progress window in the multiple-programming-languages tutor show level of mastery of
the individual productions being monitored in the LISP lesson on recursion.

Figure 4 The screen image for the word-problem tutor showing problem statement (top), equations
window (left), operations and variable window (middle), and diagram (right).

. <<}
tRoLag apod weabhoad ulajulf
#AODUIA LO1108A3IUI

WOoBQpIdJ dOINL

WiBqoad 3X3

n—_v—x- :
21952 :
.._HL »m an3|
J233WelRg JRWIIC § < ucwEmuwuw_w_Own :
uonyesedan adA)
sadA} <juonesepaqg aqeisen) VA
AU Y Aeday
-suonesadg ueajoog <} UoleIEjIa(] JUEISUDY)
suonyesadg onawnsy 1SNOJ
sjuawajels (<1ony) HEMETINENEEIER wvaoodd
{aup 393jas 4033 200D §

88°'08S9 SL Yoaydsded unoy

p0°06p :ausmied sbebiuom ALyaruom ays $} AeYs

GT°'0 :9304 X3 2IRAIS Y S} Ieyy

G2°'6 :91Td Xe3 |eJIPIS 9YI S} YA

60°0SZ ‘UOLINQLJIIUOD I QRILJIRYD ALYJUON Y S| ICYN
08 80602 :AJeLes Alyjuow Syl S} ILYM

'SEYD Il Mool pPLNOA UOLIICISIUL spdues ¢

(W - (((s1 + J1) ~0'1T) « (D-8))) =¥ ieLnwJo) dya esn

*(¥) uo 2ApL 03 338 sey aasn aya Aauom Jo

JUNONE Yl IR NOLED 03 SANLeA Syl asn ‘' (W)auamded obebHiuow pue ‘a3ed xe3
(J1)Leaapey) pue (s]1)31Ras ‘(J)uopangiaauod sLqeardeyd ‘(g)iaetes

Alyauomw 3yl ul pead (tLe yortya weahoad peosed e 3L ay i

W1Godd 3uL §

MOPUIM 10104 g §

asualajay Aeduy
‘suonedadqg ueajoog
- .

<<«
LAG S Apod NeJhoad Ja3ul

MOPUIM UOIIIBIAIUI w

Wo8Qpood dOinyi
‘anN3
<€l iudwalelg) :
‘((¢zuoissasdx]) - [AEGIEEIGEERN) . st yoayoled o)) NTILIHM
‘{(abebriopy) NIAQVIH
‘(. -uawded abebjiow Ajuows ayy s yeym,) JLHUM
‘{(areyarerg) N1avad |}
{(; :@1es xey ajers ayl si Ieym.) JLHM
: ‘(eareyjesapay) NIQvyaIH
(. :@1ea xe) esapay ayl St 1eym,) JLIHM
‘(AMueys) NIavad
(¢ cuonnquos ajqeiueys Ayjuow ayl si Jeym) JLIHM
{(Asejeg) NIQY3IH
‘(. :Kaejes Apjjuows ayy st eym,) 1M
NI939
<{guonesepagajqelse)>
‘¢gadAy> : abebiiopy
i¢padA]> : ayeyareig ﬁ
S¢gadA]> : ajeyesapay
i¢zadhyy : AQeyn
i¢radAyy : Asepeg
HYA
< [Co_uw.-w_omq uCﬁaw-._OOv
. 1SNOD
‘(anding‘anduy) yoayohed WvHOOHd

401103 9p0D

80°'6S9 SL ¥o9ydded unoy

98°'06p :iusmied sbehHzsom ALYauom Yl S} Ieyp

ST'@ :93€J XT3 9I0IS IYI §I IPYH

GZ'H :93bd XEI [RJUPIS SYI St ICYH

98°0S2 U0 INQEIIUCD | QEILJIEYD ALYIUOK YL S| YA
80 60BZ AdeeS ALYIUON Y1 S} Ieyy

'SEYT ¥YL| YOOl PLNOA uoLaldRJIIUL Sldwes ¥

*(H - (((sL + 31) -0°'T) «» (0-29))) =¥ (eLNNa0y Y3 asn

*(Y¥) uo ALl 031 39| SeyY J4Isn 3Ya Auow Jo

AUNOWR QY3 9IELNDLED 07 SaNLeA Os4Y1 as ' (W)Iudwded abebBisow pue ‘9364 xe3
(J1)1e49pa) pue (s1)eieas ‘(9)uoiangLaauod sLqeatteyd ‘(g)Adees

ALYyauos Iyl UL pesda LA yosiym weaboad (eosed e 3144
1Wi91q0id PUL

A%

MODUIAA Jdui0dg

FProqress wWindows

r~oding 2 block nd arithmetic re <inn cnre

Coding the main recursive & in arithmetic recursior

Cnding the hacse case fart in arithmetic re sinn code
i e pe Sjye i & pp cjye o hady

W"ed uoon.

a & pe ahle

Figure 3

x2-58 M
x2-02
ol oz
x
z-x
T S camiwne (%2-02Z)e(*2~-P1)=09}
. NOLLYNDA ANV 2
3 FdvHs 190Y (x2-0Z)sm=001
. I 1gav AMOIL -
WYHOVIa 103135

74 25 34T

‘auresj
YY) JO SSAPORR M PUyj “SMoys H
‘woqoad s osad jJo wo aserbs 0P WO pi >a. :

wo @z samsesw awes) on.)od ¥ . E

